

	

	

MovieLabs Data Distribution Framework (MDDF)
Services API

	
CONTENTS
1	Introduction	1
1.1	Document Organization	1
1.2	Document Notation and Conventions	1
1.3	Normative References	1
1.4	Informative References	3
1.5	Identifiers	3
1.6	Rationale	3
1.7	Status	4
2	API Overview	5
2.1	Scope	5
3	HTTP and TLS	6
3.1	HTTP	6
3.1.1	Specification Compliance	6
3.1.2	Character Encoding	6
3.1.3	XML and JSON	6
3.1.4	Range-GET for multiple resources	6
3.1.5	Cache Support	7
3.1.6	Error Response	7
3.1.7	Connection Reuse	8
3.1.8	HTTP Response Codes	9
3.2	TLS	9
4	Authentication and Authorization	10
4.1	Overview	10
4.1.1	Terminology used in this section	10
4.1.2	Requirements	10
4.1.3	Guiding Principles	10
4.2	Authentication	10
4.2.1	Authentication Methods	11
4.2.2	Client Authentication	11
4.2.3	Resource Owner User Authentication	11
4.3	Authorization	11
4.3.1	Authorization Overview	11
4.3.2	Client Registration	12
4.3.3	Obtaining Authentication Code	12
4.3.4	Authorization Process	15
5	Endpoints	16
5.1	Approach	16
5.2	Base URL	16
5.3	Version	16
5.4	Function-specific Path	16
5.4.1	REST API Path	16
5.4.2	Atom API Path	17
5.4.3	Other Paths	17
6	RESTful Web Service	19
7	Atom Interface	20
[bookmark: _GoBack]7.1	Why Atom	20
7.2	Implementation Requirement	20
7.3	Approach	20
7.3.1	Protocol	20
7.3.2	Atom Compliance	21
7.3.3	Service Document	21
7.3.4	Feeds	22
8	Avails API	25
8.1	General Requirements	25
8.2	Single Avails	25
8.2.1	Operations	25
8.2.2	Error Codes	26
8.3	Bulk Avails	26
8.3.1	Operations	26
8.3.2	Error Return	27
8.4	Avails Status	28
8.5	Avails Atom	28
9	Media Entertainment Core (MEC) Metadata API	29
9.1	General Requirements	29
9.2	Single MEC	29
9.2.1	Operations	29
9.2.2	Error Codes	30
9.2.3	Image Delivery	30
9.3	Bulk MEC	31
9.4	MEC Status	31
9.5	MEC Atom	31
10	Media Manifest Core (MMC) API	32

NOTE: No effort is being made by Motion Picture Laboratories to in any way obligate any market participant to adhere to the Common Metadata, Common Media Manifest Metadata or Media Entertainment Core, or other specifications. Whether to adopt the specifications in whole or in part is left entirely to the individual discretion of individual market participants, using their own independent business judgment. Moreover, Motion Picture Laboratories disclaims any warranty or representation as to the suitability of this specification for any purpose, and any liability for any damages or other harm you may incur as a result of subscribing to this specification.

REVISION HISTORY

	Version
	Date
	Description

	1.0
	TBD
	First Release

	[image:]
	
	MDDF API
DRAFT
	Ref: TR-MDDF-API
Version v1.0 DRAFT
Date: May 5, 2017

	
	
	
	

	i
[bookmark: _Ref224124414][bookmark: _Ref224530607][bookmark: _Toc481763692]Introduction
The MovieLabs Data Distribution Framework (MDDF) Services API is a secure RESTful-style interface for exchange of distribution metadata.
[image:]
[bookmark: _Toc241389372][bookmark: _Toc241389373][bookmark: _Toc241389374][bookmark: _Toc241389375][bookmark: _Toc241389376][bookmark: _Toc241389377][bookmark: _Toc241389378][bookmark: _Toc241389379][bookmark: _Toc241389380][bookmark: _Toc241389381][bookmark: _Toc236406159][bookmark: _Toc481763693]Document Organization
This document is organized as follows:
1. Introduction—Background, scope and conventions
2. API Overview
3. [bookmark: _Ref481587644]HTTP and TLS – Protocol specification for HTTP and TLS
4. [bookmark: _Ref481587646]Authentication and Authorization – Specification of authentication and OAuth 2.0-based authorization
5. [bookmark: _Ref481587648]Endpoints – Definition endpoints (URLs) for REST and Atom
6. REST Interface – Definition of RESTful interface
7. Atom Interface – Definition of how Atom is used for notifications
8. Avails API – API specifics for EMA Avails
9. MEC API – API specifics for Media Entertainment Core (MEC) metadata
[bookmark: _Toc236406160][bookmark: _Toc481763694]Document Notation and Conventions
The document uses the conventions of Common Metadata [CM].
[bookmark: _Toc247703963][bookmark: _Toc247703964][bookmark: _Toc247703965][bookmark: _Toc247703966][bookmark: _Toc247703967][bookmark: _Toc247703968][bookmark: _Toc247703969][bookmark: _Toc247703970][bookmark: _Toc233133758][bookmark: _Toc247703973][bookmark: _Toc236406163][bookmark: _Toc303002227][bookmark: _Toc481763695]Normative References
	[Manifest]
	TR-META-MMM MovieLabs Media Manifest Metadata, v1.6, http://www.movielabs.com/md/manifest

	[CM]
	TR-META-CM MovieLabs Common Metadata, v2.5, http://www.movielabs.com/md/md

	[EIDR-TO]
	EIDR Technical Overview, November 2010. http://eidr.org/technology/#docs

	[MMC]
	Media Manifest Core (MMC)

	[MEC]
	Media Entertainment Core (MEC) Metadata, version 2.5. www.movielabs.com/md/mec and http://entmerch.org/programsinitiatives/ema-metadata-structure.

	[Avails]
	Entertainment Merchant’s Association (EMA) Avails, Version 2.2. www.movielabs.com/md/avails

	[RFC3629]
	IETF RFC 3629, UTF-8, a transformation format of ISO 10646, https://tools.ietf.org/html/rfc3629

	[HTTP]
	IETF RFCs 7230-7235
IETF RFC 7230, Hypertext Transfer Protocol —HTTP/1.1: Message Syntax and Routing, https://tools.ietf.org/html/rfc7230
IETF RFC 7231, Hypertext Transfer Protocol —HTTP/1.1: Semantics and Content, https://tools.ietf.org/html/rfc7231
IETF RFC 7232, Hypertext Transfer Protocol —HTTP/1.1: Conditional Requests, https://tools.ietf.org/html/rfc7232
IETF RFC 7233, Hypertext Transfer Protocol —HTTP/1.1: Range Requests, https://tools.ietf.org/html/rfc7233
IETF RFC 7234, Hypertext Transfer Protocol —HTTP/1.1: Caching, https://tools.ietf.org/html/rfc7234
IETF RFC 7235, Hypertext Transfer Protocol —HTTP/1.1: Authentication, https://tools.ietf.org/html/rfc7235

	[RFC7617]
	IEFT RFC 7617, The ‘Basic’ HTTP Authentication Scheme, https://tools.ietf.org/html/rfc7617

	[RFC3986]
	IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, https://www.ietf.org/rfc/rfc3986.txt

	[RFC4346]
	IETF RFC 4346. The Transport Layer Security (TLS) Protocol Version 1.1. https://www.ietf.org/rfc/rfc4346.txt

	[RFC5246]
	IETF RFC 5246, The Transport Layer Security (TLS) Protocol, Version 1.2, https://tools.ietf.org/html/rfc5246 as updated by Errata.

	[TLS13-draft]
	IETF DRAFT RFC, The Transport Layer Security (TLS) Protocol Version 1.3 draft-ietf-tls-tls13-19, https://tools.ietf.org/html/draft-ietf-tls-tls13-19

	[RFC4287]
	IETF RFC 2460, The Atom Syndication Format, December 2005. https://tools.ietf.org/html/rfc4287

	[RFC5023]
	IETF RFC 5023, The Atom Publishing Protocol, October 2007, https://tools.ietf.org/html/rfc5023 as modified by Errata 1304 and 3207

	[RFC6749]
	IETF RFC 6749, The OAuth 2.0 Authorization Framework, https://tools.ietf.org/html/rfc6749, as modified by Errata.

All Common Metadata and Media Manifest references are included by reference.
[bookmark: _Toc236406164][bookmark: _Toc303002228][bookmark: _Toc481763696]Informative References
	[MMDelivery]
	BP-META-MMMD, Using Media Manifest, File Manifest and Avails for file Delivery (Best Practice), v1.1, www.movielabs.com/md/manifest

	[Atom]
	Atom Enabled web site, http://www.atomenabled.org/

	[REST]
	Fielding, Roy, “Chapter 5, Representational State Transfer (REST)”, Architectural Styles and the Design of Network-based Software Architectures, 2000, http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[bookmark: _Toc240182928][bookmark: _Toc249809044][bookmark: _Ref250386021][bookmark: _Ref250392056][bookmark: _Ref250392057][bookmark: _Ref250392072][bookmark: _Ref250392089][bookmark: _Ref250447790][bookmark: _Toc481763697][bookmark: _Toc240182929]Identifiers
Identifiers must be universally unique. Recommended identifier schemes may be found in Common Metadata [CM] and in DECE Content Metadata [DECEMD].
The use of Entertainment Identifier Registry identifiers (www.eidr.org) is strongly encouraged. Please see [EIDR-TO].
Best practices for identifiers can be found in Best Practices for Delivery [MMDelivery].
[bookmark: _Toc235960647][bookmark: _Toc235960648][bookmark: _Toc235960649][bookmark: _Toc235960650][bookmark: _Toc235960651][bookmark: _Toc235960652][bookmark: _Toc235960653][bookmark: _Toc235960654][bookmark: _Toc235960660][bookmark: _Toc235960664][bookmark: _Toc235960665][bookmark: _Toc235960667][bookmark: _Toc235960680][bookmark: _Toc235960710][bookmark: _Toc235960712][bookmark: _Toc235960725][bookmark: _Toc235960731][bookmark: _Toc235960755][bookmark: _Toc235960784][bookmark: _Toc481763698]Rationale
Every studio or service provider must communicate with every retailer service that offers their content. This creates the potential of s x r interfaces (s studios and r retailers).
To reduce the number of unique means of communication, the industry has created specifications such as EMA Avails for Avail, Media Entertainment Core (MEC) for metadata, Media Manifest Core (MMC) for delivery information, and Cross Platform Extras (CPE) for interactivity. Although these specifications are not universally implemented, they are the accepted direction for the industry.
Prior to this specification there was not standard means for communicating data. Common practices include email, ftp (and other file transfers), and phone conversations. Another method is for the retailer to host a portal for manual uploads. Each has its merits, but none offers all of automation, security, accuracy and auditability. Portals are particularly problematic because they require manual entry of data. With hundreds of partners, studios complain of being “portaled to death” and retailers complain about timeliness and inaccuracy.
The solution is to establish an API that supports automation. Under the coordination of MovieLabs, the retailers, studios, Entertainment Merchant’s Association and the Digital Entertainment Group launched an effort to, “Define a standardized API is essential to maximize automation: Reduce cost, reduce errors, reduce time to market, improve visibility, increase quality, and support business models that increase revenue.”
This specification is the result of that effort.
Initial use cases defined for this activity include:
· Avails submission
· Content ordering
· Fulfillment status
· Ingest status & QC feedback
· Storefront status
· Asset delivery/asset updates
· Manifest updates
· POS/revenue reporting
Goals included
· Help justify business case for implementation
· Speed/efficiency
· Reduction in errors
· Security
· Reduction in costs
· Reduction in latency
· Ability to support new content and business models
[bookmark: _Toc481763699]Status
This specification is not completed and ready for implementation. Although tested, we anticipate that additional implementation experience will yield recommendation for changes. Implementers should anticipate one or more revisions. Reasonable measures will be taken to ensure changes are backwards compatible. See Backwards Compatibility Best Practices in [CM]
[bookmark: _Toc235960638][bookmark: _Toc244596718][bookmark: _Toc244938985][bookmark: _Toc245117632][bookmark: _Toc481763700]API Overview
[bookmark: _Toc481763701]Scope
The scope of the API is the exchange of all distribution metadata interfaces associated with the MovieLabs Digital Distribution Framework (MDDF); such as Avails, Media Manifest, Common Metadata. This API is not intended for media (i.e., video, audio, subtitles, images, apps, games, etc.).
As a general rule, the data exchanged are the XML documents associated with MDDF specification such a EMA Avails [Avails], Media Entertainment Core [MEC], Media Manifest Core [MEC]. The base specifications for the data are Common Metadata [CM], Common Media Manifest [CMM].
Cross-Platform Extras (CPE) are a series of specifications covering interactivity. As of this authoring, it has not been determined whether CPE is included in the MDDF API.
There are several data formats that have not yet fully specified, most notably title acceptance, asset ordering and reporting. When available, it is anticipated that these will be included.
MDDF interfaces are shown in the following illustration (more detailed version of the diagram in Section 1).

[bookmark: _Toc481763702]HTTP and TLS
[bookmark: _Toc481763703]HTTP
[bookmark: _Toc481763704]Specification Compliance
Servers and clients shall comply with HTTP/1.1 in accordance with [HTTP].
[bookmark: _Toc481763705]Character Encoding
XML elements shall use UTF-8 character encoding in accordance with [UTF-8].
[bookmark: _Toc481763706]XML and JSON
Clients must include “Accept: application/xml”.
Servers must support XML.
Client may include “application/json”.
Servers may support JSON.
[bookmark: _Toc481763707]Range-GET for multiple resources
Range-GET need not be supported by servers or clients.
Sorted GET requests not supported—Resources are assumed to be returned in an undefined order.
Pagination
Pagination is supported as described in this section. Note that bulk operations are not an immediate priority, so implementation of this functionality may be deferred. [CHS: We need a separate section for this kind of information.]
For pagination, all resources are assumed to a fixed but unspecified ordering that can be referenced with a numerical index into the array of resources. That is, if there are n resources, there can be referenced in the range 1-n[footnoteRef:1]. The Clients request via GET one or more resources by referencing an index or limited range of indices. [1: Note that resource references are relative (using offset) and there is no actual recording numbering.]

To obtain a range of resources, the Client performs a GET using the endpoint with a query string including the following:
· offset – offset from first record (0 offset represents the first record)
· limit – Maximum number of records that can be returned (note that only on the last request will < limit resources be returned)
The Server returns all available records inclusive of the record associated with offset through the record associated with offset + limit records corresponding with offset (first record is offset=0). For example, if offset=10 and limit=5, the eleventh through fifteenth will be returned, assuming those records are available.
When a range is specified (offset + limit), all records that exist within that range (which may be less than the limit) are returned. That informs the Client that all records have been returned. If no resources are available in that range, HTTP response code 404 is returned, also informing the Client that no more records are available. That is, the Client continues to perform queries, increasing offset by limit until either fewer that limit resources are return, or a 404 response is returned.
For example, if 18 record are available, it might look something like this:
GET https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/?offset=0&limit=5
(5 avails returned)

GET https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/?offset=5&limit=5
(5 avails returned)

GET https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/?offset=10&limit=5
(5 avails returned)

GET https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/?offset=15&limit=5
(3 avails return)
Resource Count
To determine the number of resources, a Client may (optionally) perform a GET to the getcount endpoint (e.g., https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/getcount). The Server returns the number of Resources. For example:
<ResourceCount>
 <NumberOfResources>18<NumberOfResources>
</ResourceCount>
As resources can be added or deleted, the number of resources can change between resource GETs and is therefore unreliable.
[bookmark: _Toc481763708]Cache Support
Servers must include “ETag:” in GET responses. [CHS: I included this because it’s commonly used and allows clients to know which mechanisms to use. I think this improves interoperability. However, it might be best to leave this to implementation.]
Clients include “If-None-Match:” in GET requests
Servers respond with 304 if matched
[bookmark: _Toc481763709]Error Response
Invalid client requests result in an error message being returned.
The error message is designed to provide some degree of automated processing at the client. The error message is also designed to provide useful information to operators and engineers who need to determine what went wrong. Consequently, the returned error information includes both error codes and human-readable text.
Server implementers are encouraged to provide useful guidance in error messages.
Schema and data definition
Errors are returned in an Error element as follows
	Element	
	Attribute
	Definition
	Value
	Card.

	Error
	
	
	
	

	ErrorCode
	
	A numeric or text label associated with the error. These codes must be documented.
	xs:string
	

	ErrorMessage
	
	A human-readable text description of the error.
	xs:string
	

	Resource
	
	Resource URL associated with Resource associated with request. This will be the same URL that was used in the request.
	xs:anyURI
	

	MoreInfo
	
	Any additional information the server implementer believe the client implementer will find useful.
	xs:string
	0..1

	Ref
	
	A transaction reference for debugging (e.g., retrieving logs).
	xs:string
	0..1

Error Example
<?xml version="1.0" encoding="UTF-8"?>
<Error>
	<ErrorCode>XMLValidation</ErrorCode>
	<ErrorMessage>Avails XML Document does not comply with Avails v2.2 Schema</ErrorMessage>
	<Resource>api.craigsmovies.com/mddf/v1/craigs.movies.com/avails/md:alid:eidr-s:abcd-1234-abcd-1234-abcd-m</Resource>
	<MoreInfo>Missing required field AvailsLicensor</MoreInfo>
	<Ref>1234abcde</Ref>
</Error>
[bookmark: _Toc481763710]Connection Reuse
To avoid connection establishment overhead, especially with respect to reestablishing TLS, persistent HTTP connections should be supported on servers and used by clients in accordance with [HTTP].
[bookmark: _Toc481763711]HTTP Response Codes
The following response codes must be generated by servers and supported by Clients. Other error codes may be generated by Servers and must be accepted by Clients.
	Code
	Interpretation

	200 OK
	Request received and processed.

	201 Created
	Object created (POST). Location information is returned

	204 No Content
	A DELETE is performed on a nonexistent resource

	304 Not Modified
	Content has not been modified since previous request with same ETag

	400 Bad Request
	Improperly formed request (e.g., bad XML)

	401 Unauthorized
	Client failed to authenticate properly and cannot access resource. Can be repeated after authentication.

	403 Forbidden
	Client authenticated properly, but is attempting to access a resources for which the client does not have rights. Do not repeat request

	404 Not Found
	Attempting to access a resource that does not exist

	5xx Server Error
	Try again

[CHS: One school of thought is to limit the error codes to a list (like above), and prohibit other response codes. One variation is to includes unlisted response codes in <error>. Thoughts?]
[bookmark: _Toc481763712]TLS
Connections between clients and servers shall use TLS 1.2 in accordance with [RFC5246].
Note that the intent is to adopt TLS 1.3 when available. Draft documentation can be found in [TLS13-draft] and successive drafts.
[bookmark: _Toc481763713]Authentication and Authorization
[bookmark: _Toc481763714]Overview
[bookmark: _Toc481763715]Terminology used in this section
The following terms are used in this section. Many of these correspond with OAuth2 terms. In those cases, the formal definition is in [RFC6749].

	Term
	Meaning

	User
	A human being accessing some service

	Resource Owner
	User that provides/owns Resource data (e.g., Studio with Avails)

	Resource Server
	API server (e.g., Retailer providing Avail service)

	Client
	Application acting on behalf of a Resource Owner accessing a Resource Server (e.g., Application at Studio supporting Avails)

	Authorization Server
	Server that delivers appropriate access tokens to the Client after authenticating Resource Owner

	Portal
	A web user interface provided in conjunction with the Resource Server and Authorization Server to provide authorization information to a user (e.g., Portal at Retailer that supports Avails).

[bookmark: _Toc481763716]Requirements
It is necessary to authenticate both Clients and Resources.
For purposes of Authorization, Resource Owners grant permissions to Clients. Clients can be same organization as Resource Owner, or distinct. There may be multiple Clients authorized to act on behalf of Resource Owner.
[bookmark: _Toc481763717]Guiding Principles
We are striving for strong security. In that spirit, the following principles apply:
· Protect long-lived secrets by using them sparingly (infrequent use of passwords, relatively short lived access tokens)
· Authentication secrets not reused between organizations (no “password” sharing)
· Secrets always passed through secure channels
[bookmark: _Toc481763718] Authentication
Authentication is required to register clients with OAuth2 Authorization Servers and and to obtain OAuth2 Authorization Codes.
[bookmark: _Toc481763719]Authentication Methods
A service (e.g., Portal or OAuth2 Authentication Server) can authenticate a User via any mechanism is feels is appropriate. Common methods include username and password and biometrics (fingerprints).
When practical, Two Factor Authentication is recommended.
[bookmark: _Toc481763720]Client Authentication
Client operators must register clients with OAuth2 Authentication Server. Part of this registration process requires a user to be authenticated. This process is defined in Section 4.3.2.
Note that a client can act on behalf of multiple Resource Owners (e.g., service provider servicing multiple studios).
[bookmark: _Toc481763721]Resource Owner User Authentication
User authentication is needed for a Resource Owner’s Client User to obtain access to resources on a Resource Server. More specifically, User authentication is a necessary part of the process to obtain an Authentication Code. The process of obtaining an Authentication Code is described in Section 4.3.3
[bookmark: _Toc481763722]Authorization
Authorization is based on OAuth 2.0 (OAuth2) as defined in [RFC6749]. Access Tokens are obtained in accordance with Authorization Code Grant as defined in Section 4.1 of [RFC6749].
[bookmark: _Toc481763723]Authorization Overview
Terminology
The following terms are provided here for convenience, but the normative definitions are in the RFC:
· Authorization Grant – a secret presented to obtain an Authentication Token and, optionally, a Refresh Token
· Authentication Tokens – A secret presented to access Resources
· Includes ‘scope’ of what can be accessed
· Short lifespan reduces impact of compromise
· Can be revoked
· Refresh Tokens – A secret presented to obtain Authentication Token
· Facilitate short-life Authentication tokens (can always refresh)
· More secret than Authentication token
· Can be revoked
Note on Methods for Obtaining Access Tokens
OAuth2 provides several methods for obtaining Access Tokens. The MDDF API currently supports only Authorization Code Grant as defined in Section 4.1 of [RFC6749].
The following is provided for information purposes in the spirit of providing rationale for reviewers, and to provide data for future modifications of the specification: Implicit Grant (Section 4.2) is considered insufficiently secure (access tokens too long-lived). Resource Owner Password Credentials Grant (Section 4.3) is would require sharing passwords between organizations, a weak security practice that violates one of our guiding principles. Client Credentials Grant (Section 4.4) is not supported because Client credentials do not necessarily identify Resource Owner
[bookmark: _Ref481601189][bookmark: _Toc481763724]Client Registration
To obtain access to an OAuth2 Authentication Server, clients must be registered with that server ([RFC4769], Section 2. In this case, the server is operating by the Resource Owner (e.g., in the case of Avails, a retailer). The registration process provides the client with a Client Identifier and Client Secret.
First, a user associate with the client must authenticate to the Authentication Server. The assumed model is that client user authenticates (e.g., uses username and password) to log into a Portal capable of generating Client Identifiers and Client Password. The Portal performs the registration process and delivers the Client Identifier and Client Password to the user.
This is illustrated in the following picture:
[image:]
Note that a Client can act on behalf of multiple Resource Owners (e.g., service provider servicing multiple studios).
[bookmark: _Ref481601183][bookmark: _Toc481763725]Obtaining Authentication Code
The Authentication Code is information needed to obtaining Access Tokens, and optional Refresh Tokens.
The Authorization Grant process follows the Authorization Code Grant approach. However, to support studio, service provider and retailer workflows that method of obtaining an Authentication Code may appear slightly different.
Client Identifier
The Client Identifier is needed to obtain an Authorization Code. The Client User must transmit the Client Identifier to the Resource Owner User.
[image:]
Access Token Scope
Scope defines which resources the Client can access as defined in [RFC6749], Section 3.3. The following terms are used to define scope
	Scope Token
	Scope

	avail
	Avail API as defined in Section 8

	mec
	MEC API as defined in Section 9

	TBD
	

[CHS: Do we want to define scope more exactly (e.g., avail:rest, avail:atom, or avail:read, avail:write)]
Portal Methods
The simplest method for obtaining an Authentication Code is via a Portal. First, the Resource Owner User (e.g., studio user), logs into a Portal, indicates what information will be accessed (i.e., scope), and retrieves the Authentication Code (e.g., copies it from a screen provided by the Portal).
[image:]
This flow is illustrated here:
[image:]
Once the Authentication Code is retrieved, it is passed to the Client user via secure method.
[image:]
Although this specification does not define the method, good security practices are required. Studios, service providers and retailers have secure channels used for confidential data. These channels can be used. Unsecured email is an unacceptable method.
In some cases, the Portal and Authentication Server are integrated. In this model, the OAuth2 protocol is unnecessary and the exchange would look like this:
[image:]
This flow is not strictly OAuth2 flows, but might make sense for some service implementers. Note that because it is non-standard it might be difficult to integrate OAuth2 libraries into this model.
Client-based methods
Following is the most basic method for obtaining an Authorization Code. This does not require a Portal. It is no clear whether implementers will build a client service for the rare operation of obtaining an Authorization Code.
The flow is illustrated here:

[image:]
[bookmark: _Toc481763726]Authorization Process
The Authorization process involves obtaining Access Tokens, and optionally Refresh Tokens; and using those tokens to access Resources. This process is defined in RFC 6749.
The process has the prerequisite that the Client hold a valid API Key and Authentication Code.
The flow for obtaining and using an Access Token is as follows:
[image:]

Clients must support Refresh Tokens, as defined in[RFC6749] Section 1.5. Servers may support Refresh Tokens.
The flow for accessing a resource is as follows:
[image:]
[bookmark: _Ref481422583][bookmark: _Ref481427800][bookmark: _Toc481763727]Endpoints
[bookmark: _Toc481763728]Approach
Endpoints are defined by URLs constructed as follows
“https://” <Base URL> “/” <version> “/” <partner> “/” <function-specific path>
For example, https://api.craigsmovies.com/mddf/v1/sofaspudfilms.com/avails/md:apid:eidr-s:B65C-7EC9-1F9F-D611-F84F-0
[bookmark: _Toc481763729]Base URL
Each Service Provider provides a Base URL from which REST endpoints are constructed. Base URLs include the domain where the service is hosted.
An example of a Base URL that might be provided by Sofa Spuds Studio is https://api.craigsmovies.com/mddf.
[bookmark: _Toc481763730]Version
Version indicates the version of the API. Within a version, the API should robustly accept content. Common Metadata [CM], Section 1.6 provides best practices for maximizing compatibility.
An example of a version is v1. Note that versions like v1.1 are discouraged as this implies the API is changing too frequently.
When a Service Provider begins supporting a new API version, it must continue to support the old API for some period, unless partners can transition immediately. That is, the Service Provider will support two or more versions of the API during that transition period. Recommended period is 6 months.
[bookmark: _Toc481763731]Function-specific Path
The function-specific path uniquely identifiers the resource (for REST API), Atom endpoint or service function.
The function-specific path begins with the service, unless the function spans all services. An example of a service is, “avails/”.
[bookmark: _Ref481587575][bookmark: _Toc481763732]REST API Path
When the function-specific path contains only the service, REST requests apply to all resources in that service. Note that bulk services have been prioritized lower than individual operations and might not be implemented immediately.
For example, https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails refers to all Avails resources for that Service Provider and that Partner.
When the function-specific path contains the service plus a resource identifier, REST requests apply to the identified resource.
For example, https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/md:alid:eidr-s:B65C-7EC9-1F9F-D611-F84F-0 refers to the associated with that ALID.
[bookmark: _Ref481435515][bookmark: _Toc481763733]Atom API Path
The only defined Atom endpoint is the location of the Service Document. It can be found with a Function-Specific Path of “avails_atom”.
For example, a GET of https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails_atom returns the service document.
The Service document returns URLs for the Feed documents. These URLs are at the discretion of the Service Provider.
[bookmark: _Ref481435926][bookmark: _Toc481763734]Other Paths
Special paths are defined for specific purposes. These use neither REST nor Atom semantics.
Special paths include the following.
	Path
	Function

	getcount
	Returns ResourceCount indicating the number of resources associated with an endpoint. For example, https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/getcount

	getstatus
	Returns a status object associated with the resource. These are defined for the specific service. For example, of obtaining status on multiple resources is as follows: https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/getcount,
and obtaining status on a single resource is as follow: https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/md:alid:eidr-s: B65C-7EC9-1F9F-D611-F84F-0/getstatus

	TBD
	

This list may be expanded.
ResourceCount
The ResourceCount object is defined as follows:
	Element	
	Attribute
	Definition
	Value
	Card.

	ResourceCount
	
	
	
	

	NumberOfResources
	
	The number of resources currently associated with the endpoint.
	xs:nonNegativeInteger
	

[bookmark: _Toc481763735]RESTful Web Service
This API defines a RESTful web service, based on Roy Fielding’s doctoral dissertation [REST].
The API uses four basic HTTP methods: GET, POST, PUT and DELETE. These correspond with the CRUD function of Read, Create, Update and Delete respectively.
· GET is used to retrieve one or more resources
· POST creates one or more resources
· PUT updates an existing resource or replaces resources
· DELETE removes one or more resources
These methods use the endpoints defined in Section 5.4.1Error! Reference source not found..
[CHS: I think this should be enough. I’m assuming people know what REST is or can figure it out. If not, what should I include here?]
[bookmark: _Ref481427585][bookmark: _Ref481435489][bookmark: _Toc481763736]Atom Interface
The Atom interface provides a means for clients to determine which objects have been updated by the server and to status progress in the processing of those objects.
Feeds are provided to optimize around the urgency of status with exceptions being highest priority and general status being the lowest.
[bookmark: _Toc481763737]Why Atom
Only a small percentage of resources are updated each week (e.g., in Avails on the order of fifty updates against hundreds of thousands of entries). Although polling all resources would function, even with caching it would not be efficient. A better solution is for the server to post a list of updates which the client could status.
There are numerous proprietary solutions, however since these solution favor one company over another, the decision was made to use a standard interface. Atom was the best candidate identified.
[bookmark: _Toc481763738]Implementation Requirement
Servers are required to implement Atom in accordance with this specification.
Clients are not required to implement Atom, although highly recommended with the number of resources becomes large. We don’t have a specific number for ‘large’ but, when there are more than several hundred resources, implementation should be considered.
[bookmark: _Toc481763739]Approach
The information provided by the RESTful interface is the authoritative source. The Atom feed provides pointers to the RESTful interface when updates of interest occur.
[bookmark: _Toc481763740]Protocol
Protocols used shall be in compliance with Protocol and Endpoint requirements of Sections 3, 4 and 5.
An Atom exchange is illustrated here:
[image:]
[bookmark: _Toc481763741]Atom Compliance
Atom will be implemented in accordance with the Atom Publishing Specification (AtomPub) [RFC5023] and the Atom Syndication Format [RFC4287] as constrained by this specification.
[bookmark: _Toc481763742]Service Document
The Atom Service Document defines the feeds.
Obtaining the Service Document
The Service Document is retrieve with a GET from the well-known address provided by the Service as found in Section 5.4.2.
Each application has its own Service Document. For example, there are unique Avails Service Documents, MMC Service Documents, and MEC Service Documents [CHS: Everyone agree?].
Service Document Format
The Service Document shall conform with RFC 5023 [RFC5023] and contain the following
· A service element
· A workspace element with the title defined by the practice for the particular application. For example, an Avails Service Document has type=“Avails”.
· A collection element for each feed as defined in the Feeds Section (Section 7.3.4).
An example service document is here:

<?xml version="1.0" encoding='utf-8'?>
<service xmlns="http://purl.org/atom/app#">
 <workspace title=“Avails" >
 <collection title="Exception" href="https://api.craigsmovies.com/mddf/v1.0/avails_atom/exception.atom" />
 <collection title="Status" href=" https://api.craigsmovies.com/mddf/v1.0/avails_atom/status.atom" />
 <collection title="Progress" href=" https://api.craigsmovies.com/mddf/v1.0/avails_atom/progress.atom" />
 </workspace>
</service>
[bookmark: _Ref480999744][bookmark: _Toc481763743]Feeds
A Feed Document provides links to Resources that merit attention.
Obtaining a Feed Document
The Feed Document of a given type is retrieved with a GET from address provided in the Service Document with @title matching the label for the feed type.
Each application has its own Service Document. For example, there are unique Avails Service Documents, MMC Service Documents, and MEC Service Documents [CHS: Everyone agree?].

Feed Document Format
A Feed Document shall conform with RFC 4287 [RFC4287] and have the following
	Element
	Usage

	title
	Title of feed (“Exception”, “Status”, “Progress”)

	link
	Link to this feed

	id
	Unique ID for this entry

	updated
	Date and time when feed was updated

	entry
	One entry for each resource

	entry/title
	Optional: Title. e.g., ShortDescription from Service

	entry/link
	Link with href attribute referring to resource

	entry/id
	ID for resource (e.g., ALID for Avail)

	entry/updated
	Date and time resource was updated

	entry/category
	TBD

Following is a sample Exception Feed document:

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Avails Exception: craigsmovies.com</title>
 <link href="https://api.craigsmovies.com/mddf/v1.0/avails_atom/exception.atom" />
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa61</id>
 <updated>2017-03-16T03:43:02Z</updated>
 <entry>
 <title>Unbelievable Example Movie</title>
 <link href="https://api.craigsmovies.com/mddf/v1.0/avails_atom/md:alid:eidr-s:1234-5432-abcd-efgh-abcd-l”>
 <id>md:alid:eidr-s:1234-5432-abcd-efgh-abcd-l</id>
 <updated>2017-03-10T17:46:02Z</updated>
 </entry>
 <entry>
 <title>Sequel to Unbelievable Movie</title>
 <link href="https://api.craigsmovies.com/mddf/v1.0/avails_atom/md:alid:eidr-s:abcd-5432-abcd-efgh-abcd-l”>
 <id>md:alid:eidr-s:abcd-5432-abcd-efgh-abcd-l</id>
 <updated>2017-03-16T03:43:02Z</updated>
 </entry>
</feed>
Feed Types
There are three types of Feeds required.
These feeds are referenced by the Service Document as illustrated here:
[image:]
Feeds are defined as follows:

	Feed Type Label
	Purpose
	Update Latency
	Recommended Polling Frequency

	Exception
	Contains records associated with events that require intervention
	ASAP
	5 minutes or faster

	Status
	A change of status that likely requires non-urgent review or action.
	1 hour or less
	2 hours or faster

	Progress
	Any other update, such as an update of status that is purely informational
	24 hours or less
	48 hours or faster

Feed Type Label is the value assigned to /service/collection/@title in the Service Document
Adding and removing Feed Entries
Entries need not be maintained in a Feed indefinitely. However, it should not be removed before all the clients who are monitoring the data have retrieved it.
Entries can be removed when it becomes stale. For example, if an exception has been resolved or if an entry has been superseded with more current data. With respect to superseded entries, it is not necessary to maintain multiple references to the same resource in a feed.
Exception data should [CHS: shall?] be maintained in the feed until the exception has been resolved. Other constraints on data retention should be defined in Best Practices.
[bookmark: _Ref481603201][bookmark: _Toc481763744]Avails API
This section provides details on using the MDDF API to implement Avails.
[CHS: Note, some of these can be moved to general rules making it easier to add other services.]
[bookmark: _Toc481763745]General Requirements
Data objects associated with Avails are documented in [Avails].
Avails are subject to the rules and conventions in Sections 1-7 of this document.
In addition to errors listed, additional errors can be returned in accordance with [HTTP].
[bookmark: _Toc481763746]Single Avails
Single Avails provides the means to access a single Avails associated with a studio.
[bookmark: _Toc481763747]Operations
Operations include
· GET – GET a specific Avail
· POST – Create an Avail
· DELETE – Remove a specific Avail
· PUT – Update a specific Avail
Endpoint
Avail endpoints are of the form:
<BaseURL>+“avails/”+<ALID>
Where <BaseURL> is the Base URL as defined in Section 5, and <ALID> is the ALID associated with the Avail.
For example, https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/avails/md:alid:eidr-s: B65C-7EC9-1F9F-D611-F84F-0
GET
When a GET is performed from the Avail endpoint, the Resource Server returns the Avail associated with that endpoint represented by an AvailsList containing on Avail element.
If successful, a 200 (OK) status code is returned.
If the Avail is not present, 404 (Not Found) status code is returned.
POST
When a GET is performed to an Avail endpoint with a valid AvailsList as data, the Resource Server creates an Avail associated with that endpoint.
If successful, a 201 (Created) status code is returned.
If the Avail associated with that endpoint already exists, a 409 (Conflict) status code is returned.
If /AvailList/Avails/ALID does not identically match <ALID> in the path (URL-save encoding not withstanding), a 400 (Bad Request) status code is returned.
DELETE
When a DELETE is performed from the Avail endpoint, the Resource Server removes the Avail associated with that endpoint.
If the Avail exists, 200 (OK) is returned.
If the Avail did not exist, 404 (Not Found) is returned. Note that by returning 404 rather than 204 (No Content) the server signals an error if the resource does not exist. Although this results in a non-idempotent DELETE, it is more likely to catch ID errors and is therefore safer. [CHS: agree?]
PUT
When a PUT is performed to an Avail endpoint with a valid AvailsList as data, the Resource Server updates an Avail associated with that endpoint.
If the PUT is successful, 200 (OK) is returned.
If the Avail does not exist, 204 (No Content) is returned.
If /AvailList/Avails/ALID does not identically match <ALID> in the path (URL-save encoding not withstanding), a 400 (Bad Request) status code is returned.
[bookmark: _Toc481763748]Error Codes
TBD
[bookmark: _Toc481763749]Bulk Avails
Bulk Avails provides the means to access multiple Avails associated with a studio.
Bulk Avails implementation has been deprioritized and may not be present in many implementations.
[bookmark: _Toc481763750]Operations
Bulk Operations include
· GET – GET all Avails
· POST – Create or update multiple new Avails
· DELETE – Remove all Avails
· PUT – Update multiple Avails. Note that does not remove Avails not listed.
GET
A GET from the Bulk Avails endpoint returns all Avails as return data in the form of AvailsList.
Individual Avails are returned in /AvailsList/Avail where /AvailsList/Avail/ALID corresponds with <ALID> in the Single Avails path.
If successful, a 200 (OK) status code is returned.
If no Avails are present, 404 (Not Found) status code is returned.
POST
For each Avail in /AvailsList/Avail, if that Avail does not already exist on the Resource Server, the Avail will be created; and, if the Avail exists it is updated.
The resource name is /AvailsList/Avail/ALID and the path for the new Avail is the Single Avails path where <ALID> corresponds with the resource name.
POST is equivalent to of performing a POST on each new Avail, and a PUT on each existing Avail.
[CHS: I don’t love the semantics of mixing creation and update.]
[CHS: Note that this is NOT a Master Avail because it does not delete old Avails.]
DELETE
A DELETE to the Bulk Avails endpoint removes all Avails associated with that endpoint.
If there is a desire to remove several Avails, but not all of them, the Client must DELETE the Avails individually.
There are no DELETE-specific errors.
PUT
A PUT to the Bulk Avails endpoint is the same as POST, but individual Avails cannot be created.
If the PUT is successful, 200 (OK) is returned.
Errors are returned in the error object.
[bookmark: _Toc481763751]Error Return
TBD: Errors for multiple avails (add multiple instances to error object?)
[bookmark: _Toc481763752]Avails Status
Avails processing status can be obtained using the ‘getstatus’ endpoint as defined in Section 5.4.3.
An AvailsStatus object is returned. [CHS: This is a placeholder for a better definition. The big question is whether we define fields or just create a structure of name/value pairs. If the latter, it should used across services.]

	Element	
	Attribute
	Definition
	Value
	Card.

	AvailsStatus
	
	
	
	

	Resource
	
	Resource URL associated with Resource associated with request. This will be the same URL that was used in the request.
	xs:anyURI
	

	ProcessingState
	
	TBD
	
	

	LastUpdated
	
	Date and time of last update
	
	

	History
	
	TBD – record of changes
	
	

	TBD…
	
	
	
	

[bookmark: _Toc481763753]Avails Atom
Atom for Avails is in accordance with Section 7.
The endpoint for Avails is in accordance with Section 5.4.2.

[bookmark: _Ref481603206][bookmark: _Toc481763754]Media Entertainment Core (MEC) Metadata API
This section provides details on using the MDDF API to implement Media Entertainment Core metadata [MEC].
[bookmark: _Toc481763755]General Requirements
Data objects associated with MEC are documented in [MEC].
The MEC API are subject to the rules and conventions in Sections 1-7 of this document.
In addition to errors listed, additional errors can be returned in accordance with [HTTP].
A MEC resource consists of a XML CoreMetadata object as defined in [MEC] containing at least a Basic element.
Note that MEC resources are tied to studios. This allows multiple distributors to each have their own metadata objects associated with the same content.
[bookmark: _Toc481763756]Single MEC
Single MEC functions provides the means to access a single MEC resource.
[bookmark: _Toc481763757]Operations
Operations include
· GET – GET a specific Basic Metadata resource
· POST – Create Basic Metadata resource
· DELETE – Remove a specific Basic Metadata resource
· PUT – Update a specific Basic Metadata resource
Endpoint
MEC endpoints are of the form:
<BaseURL>+“mec/”+<ContentID>
Where <BaseURL> is the Base URL as defined in Section 5, and <ContentID> is the ContentID associated with the BasicMetadata.
For example, https://api.craigsmovies.com/mddf/sofaspudfilms.com/v1/mec/md:cid:eidr-s: B65C-7EC9-1F9F-D611-F84F-0
GET
When a GET is performed from the MEC endpoint, the Resource Server returns the metadata associated with that endpoint represented by a CoreMetdata document containing a Basic element.
If successful, a 200 (OK) status code is returned.
If the MEC resource is not present, 404 (Not Found) status code is returned.
POST
When a GET is performed to an MEC endpoint with a valid CoreMetadata as data, the Resource Server creates an MEC resource associated with that endpoint.
If successful, a 201 (Created) status code is returned.
If the metadata associated with that endpoint already exists, a 409 (Conflict) status code is returned.
If /CoreMetadata/Basic/@ContentID does not identically match <ContentID> in the path (URL-save encoding not withstanding), a 400 (Bad Request) status code is returned.
DELETE
When a DELETE is performed from the MEC endpoint, the Resource Server removes the MEC resource associated with that endpoint.
If the MEC resource exists, 200 (OK) is returned.
If the MEC resource did not exist, 404 (Not Found) is returned. Note that by returning 404 rather than 204 (No Content) the server signals an error if the resource does not exist. Although this results in a non-idempotent DELETE, it is more likely to catch ID errors and is therefore safer. [CHS: see note in Avails]
PUT
When a PUT is performed to an MEC endpoint with a valid CoreMetadata as data, the Resource Server updates MEC metadata associated with that endpoint.
If the PUT is successful, 200 (OK) is returned.
If the MEC resource does not exist, 204 (No Content) is returned.
If /CoreMetadata/Basic/@ContentID does not identically match <ContentID> in the path (URL-save encoding not withstanding), a 400 (Bad Request) status code is returned.
[bookmark: _Toc481763758]Error Codes
TBD
[bookmark: _Toc481763759]Image Delivery
Images are referenced in /CoreMetdata/Basic/LocalizedInfo/ArtReference in the form of a URL. These URLs can be
· local file references (i.e., file scheme), with location agreed upon between client and server
· Internet references (e.g., ftp or http)
· Manifest references in the form of imageid (i.e., md:imageid:…)
[bookmark: _Toc481763760]Bulk MEC
TBD whether this is supported. [CHS: ?]
[bookmark: _Toc481763761]MEC Status
MEC processing generally takes some time because images must be ingested, either from files sent separately or from URLs provided in ArtReference. Status provides the means to communicate the status of any offline processing.
MEC processing status can be obtained using the ‘getstatus’ endpoint as defined in Section 5.4.3.
An MECStatus object is returned. [CHS: TBD. This should match pattern in Avails, etc..]

	Element	
	Attribute
	Definition
	Value
	Card.

	AvailsStatus
	
	
	
	

	Resource
	
	Resource URL associated with Resource associated with request. This will be the same URL that was used in the request.
	xs:anyURI
	

	ProcessingState
	
	TBD
	
	

	LastUpdated
	
	Date and time of last update
	
	

	History
	
	TBD – record of changes
	
	

	TBD…
	
	
	
	

[bookmark: _Toc481763762]MEC Atom
Atom for MEC is in accordance with Section 7.
The endpoint for MEC is in accordance with Section 5.4.2.
[bookmark: _Toc481763763]Media Manifest Core (MMC) API
[CHS: it will follow the same pattern.]

image2.emf
Distribution

Entity

Studio

Distribution

Retailer

Fulfillment

Avails

Delivery

Asset Request

Retailer

Sales

Ordering

Reporting

Interactivity

Preprocessing

Extras/VAM

Interactivity

Player

Interactivity

Server

Interactivity Package

Consumer

Experience

MDDF Defined

MDDF Supported

Status

Status

image3.emf
Studio Mastering Distribution Entity

Studio

Distribution

Retailer

Fulfillment

Avail,

Initial Metadata

Media Manifest (Product Definition),

Metadata

Media,

Production Metadata,

Media Manifest (Delivery)

Asset Request

Mezzanine

Retailer

Sales

Order

Reporting

Entitlement

Sales

Fulfillment

Interactivity

Preprocessing

Media Manifest (Interactivity)

Interactivity metadata

Manifest “Player”

Proprietary

Format

Manifest App Data

Interactivity Server

microHTML

CPE

Package

CPE Framework

CPE Package

Media Playback

Consumer Experience

Media Server

(option)

oleObject1.bin
Studio Mastering

Distribution Entity

Studio
Distribution

Retailer
Fulfillment

image4.emf
User logs into Portal

Portal delivers Client ID and password

{abc123, sYwq0zYavwoa}

Client User

Portal

(AuthServer)

image5.emf
User transmits client_id to Resource Owner

{abc123}

Client User

Resource Owner

User

image6.emf
Portal

User logs into Portal

Portal delivers Authentication Code

{Zw80Wcwzliwk0ayb}

Resource Owner

User

User requests Authentication Code

Provides client_id

{abc123}

image7.emf
Authentication Service Portal Resource Owner User Agent (browser)

Log into portal

Request Token (client_id, scope, redirect, etc.)

Authorization Code Request

Redirect

User Authenticates

Authorization Code

Displayed Authorization Code

(suitable for copying)

image8.emf
Resource Owner delivers client-specific

Authentication Code to Client via secure channel

{Zw80Wcwzliwk0ayb}

image9.emf
Portal/Authentication Service Resource Owner User Agent (browser)

Log into portal

Request Token (incl. client_id, scope)

Displayed Authorization Code

(suitable for copying)

image10.emf
Authentication Service Resource Owner Client

Grant Request (client_id, scope and Redirection URI)

User Authenticates

Authorization Code

User Agent

image11.emf
Authentication Service Client

Grant_type= authorization_code(client_id, client_secret, code Redirection URI)

Access Token, optionally Refresh Token

Resource Server

{abc123, sYwq0zYavwoa, Zw80Wcwzliwk0ayb}

{js398xlKd0s9dDqwac09850aAAAds098, x05Ws4ah0s98ddsss}

GET, PUT, POST, DELETE

{js398xlKd0s9dDqwac09850aAAAds098}

response

image12.emf
Authentication Service Client

Grant_type= refresh_token(client_id, client_secret, refresh token, scope)

New Access Token

Resource Server

{abc123, sYwq0zYavwoa, x05Ws4ah0s98ddsss}

{da8dGT0QcaEdaUywad9dJDow0sxbp}

GET, PUT, POST, DELETE

{da8dGT0QcaEdaUywad9dJDow0sxbp}

response

image13.emf
GET Service Document

Studio

Retailer ATOM

Service document with links to feeds

Retailer REST

Once

GET Feed Document

Feed Document w/ links to updated resources

GET Resource

Resource

image14.emf
Service

Document

Exception Feed

Status Feed

Progress Feed

URLs

Feeds contain URLs to

updated Resources

image1.png
ﬁ; labs

